Hurwitz Theory and the Double Ramification Cycle
نویسنده
چکیده
This survey grew out of notes accompanying a cycle of lectures at the workshop Modern Trends in Gromov-Witten Theory, in Hannover. The lectures are devoted to interactions between Hurwitz theory and Gromov-Witten theory, with a particular eye to the contributions made to the understanding of the Double Ramification Cycle, a cycle in the moduli space of curves that compactifies the double Hurwitz locus. We explore the algebrocombinatorial properties of single and double Hurwitz numbers, and the connections with intersection theoretic problems on appropriate moduli spaces. We survey several results by many groups of people on the subject, but, perhaps more importantly, collect a number of conjectures and problems which are still open.
منابع مشابه
Polynomiality, wall crossings and tropical geometry of rational double Hurwitz cycles
We study rational double Hurwitz cycles, i.e. loci of marked rational stable curves admitting a map to the projective line with assigned ramification profiles over two fixed branch points. Generalizing the phenomenon observed for double Hurwitz numbers, such cycles are piecewise polynomial in the entries of the special ramification; the chambers of polynomiality and wall crossings have an expli...
متن کاملCombinatorics of Tropical Hurwitz Cycles
We study properties of the tropical double Hurwitz loci defined by Bertram, Cavalieri and Markwig. We show that all such loci are connected in codimension one. If we mark preimages of simple ramification points, then for a generic choice of such points the resulting cycles are weakly irreducible, i.e. an integer multiple of an irreducible cycle. We study how Hurwitz cycles can be written as div...
متن کاملPruned Double Hurwitz Numbers
Hurwitz numbers count ramified genus g, degree d coverings of the projective line with fixed branch locus and fixed ramification data. Double Hurwitz numbers count such covers, where we fix two special profiles over 0 and ∞ and only simple ramification else. These objects feature interesting structural behaviour and connections to geometry. In this paper, we introduce the notion of pruned doubl...
متن کاملPure-cycle Hurwitz factorizations and multi-noded rooted trees
Pure-cycle Hurwitz number counts the number of connected branched covers of the projective lines where each branch point has only one ramification point over it. The main result of the paper is that when the genus is 0 and one of the ramification indices is d, the degree of the covers, the pure-cycle Hurwitz number is dr−3, where r is the number of branch points. Springer and Irving independent...
متن کاملThe Class of a Hurwitz Divisor on the Moduli of Curves of Even Genus
We calculate the cycle class of the Hurwitz divisor D2 on Mg for g = 2k given by the degree k+1 covers of P with simple ramification points, two of which lie in the same fibre. We also study some aspects of the geometry of the natural map from the Hurwitz space H2k,k+1 to the moduli space M2k .
متن کامل